Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

6 курс / Медицинская реабилитация, ЛФК, Спортивная медицина / МЕХАНИЗМЫ_ВЛИЯНИЯ_ИНДУЦИРУЕМОЙ_АЦЕТИЛХОЛИНЭСТЕРАЗОЙ_ОЛИГОМЕРИЗАЦИИ

.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
2.52 Mб
Скачать

91

ВЫВОДЫ

1.Изменение уровня иммуноэкспрессии синаптофизина в энторинальной коре головного мозга трансгенных APP/PS1 (Tg+) мышей, которое напрямую коррелирует с количеством амилоидных бляшек, может использоваться как инструмент для анализа влияния АХЭ-индуцированной агрегации β-

амилоидного пептида на пространственную память;

2.При анализе ингибиторной активности и токсичности ряда производных урацила выявлено соединение 35, которое способно эффективно ингибировать АХЭ головного мозга in vivo и обладает при этом достаточно низкой токсичностью, чтобы применяться на модели БА;

3.Для соединения 35 в условиях in vitro показана способность снижать АХЭ-

индуцированную агрегацию β-амилоидного пептида;

4.Соединение 35 в дозе 5 мг/кг при внутрибрющинном введении способно как купировать симптомы нарушений памяти, так и снижать количество β-

амилоидных бляшек в энторинальной коре головного мозга мышей с моделируемой БА;

5.Терапия соединением 35 приводит к увеличению в энтоинальной коре головного мозга мышей с моделью БА количества растворимого фрагмента β-

амилоидного пептида 1-40, в то время как уровень более токсичного фрагмента

1-42 остается без изменений;

6.Применение соединения 35 предотвращает снижение иммуноэкспрессии синаптофизина в энторинальной коре головного мозга мышей с моделью БА;

7.Индуцируемая АХЭ олигомеризация β-амилоида (частично устраняемая соединением 35), вносит вклад в формирование нарушений памяти в условиях генетической модели БА на мышах.

t.me/medicina_free

92

СПИСОК ЛИТЕРАТУРЫ

1.Abramov E. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses./ E. Abramov, I. Dolev, H. Fogel, G.D. Ciccotosto, E. Ruff, I.Slutsky.// Nat Neurosci., 2009. – Vol. 12(12). – P. 1567-1576.

2.Akiyama H. Inflammation and Alzheimer's disease./ H. Akiyama, H. Mori, T. Saido, H. Kondo, K. Ikeda, P.L. McGeer.// Neurobiol Aging, 2000. – Vol. 21. – P. 383–

421.

3.Aleardi A.M. Gradual alteration of mitochondrial structure and function by beta– amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release./ A.M. Aleardi, G.Benard, O. Augereau, M. Malgat, J.C. Talbot, J.P. Mazat, T. Letellier, J. Dachary–Prigent, G.C. Solaini, R. Rossignol.// J. Bioenerg. Biomembr, 2005. – Vol. 37. – P. 207–225.

4.Alvarez A. Stable complexes involving acetylcholinesterase and amyloid–beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils./ A. Alvarez, R. Alarcon, C. Opazo, E.O. Campos, F.J. Munoz, F.H. Calderon, F. Dajas, M.K. Gentry, B.P. Doctor, F.G. De Mello, N.C. Inestrosa.// J Neurosci, 1998. – Vol. 18(9). – P. 3213–3225.

5.Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde./ A. Alzheimer.// Allg

Z Psychiatr, 1907. – Vol. 64. – P. 146–148.

6.Arispe N. Zn2+ interaction with Alzheimer amyloid beta protein calcium channels./ N. Arispe, H.B. Pollard, E. Rojas.// Proc Natl Acad Sci USA, 1996. – Vol. 93. – P. 1710–1715.

7.Arvanitakis Z. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function./ Z Arvanitakis, R.S. Wilson, J.L. Bienias, D.A. Evans, D.A. Bennett.// Arch Neurol, 2004. – Vol. 61. – P. 661–666.

8.Barker W.W. Relative frequencies of Alzheimer disease, in the State of Florida Brain Bank./ W.W. Barker, C.A. Luis, A. Kashuba, M. Luis, D.G. Harwood, D. Loewenstein, C. Waters, P. Jimison, E. Shepherd, S. Sevush, N. Graff–Radford, D. Newland, M. Todd, B. Miller, M. Gold, K. Heilman, L. Doty, I. Goodman, B.

t.me/medicina_free

93

Robinson, G. Pearl, D. Dickson, R. Duara.// Alzheimer Dis Assoc Disord, 2002. –

Vol. 16. – P. 203–212.

9.Bartolini M. Beta–Amyloid aggregation induced by human acetylcholinesterase: inhibition studies./ M. Bartolini, C. Bertucci, V. Cavrini, V. Andrisano.// Biochem Pharmacol, 2003. – Vol. 65(3). – P. 407–416.

10.Bartus R.T. The cholinergic hypothesis of geriatric memory dysfunction./ R.T. Bartus, R.L. Dean 3rd, B. Beer, A.S. Lippa.// Science, 1982. – Vol. 217. – P. 408– 417.

11.Bell K.F. Altered synaptic function in Alzheimer's disease./ K.F. Bell, A. Claudio Cuello.// Eur J Pharmacol, 2006. – Vol. 545(1). – P. 11–21.

12.Berr C. Prevalence of dementia in the elderly in Europe./ C. Berr, J. Wancata, K. Ritchie.// Eur Neuropsychopharmacol, 2005. – Vol. 15(4). – P. 463–471.

13.Bhattacharya S. Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease./ S. Bhattacharya, C. Haertel, A. Maelicke, D. Montag.// PLoS One, 2014. – Vol. 9(2):e89454.

14.Billingsley M.L. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration./ M.L. Billingsley, R.L. Kincaid. Biochem., 1997. – Vol. 323. – P. 577–591.

15.Birks J. Cholinesterase inhibitors for Alzheimer's disease./ J. Birks.// Cochrane Database Syst Rev., 2006.

16.Bitner R.S. Selective alpha7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3beta and decreases tau phosphorylation in vivo./ R.S. Bitner, A.L. Nikkel, S. Markosyan, S. Otte, P. Puttfarcken, M. Gopalakrishnan.// Brain Res., 2009. – Vol. 591. – P. 65–74.

17.Blass J.P. Cerebrometabolic abnormalities in Alzheimer's disease./ J.P. Blass.// Neurol Res., 2003. – Vol. 25(6). – P. 556–566.

18.Bowen D.M. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients./ D.M. Bowen, J.S. Benton, J.A. Spillane, C.C. Smith, S.J. Allen.// J Neurol Sci., 1982. – Vol. 57. – P. 191–202.

t.me/medicina_free

94

19.Bowen D.M. Neurotransmitterrelated enzymes and indices of hypoxia in senile dementia and other abiotrophies./ D.M. Bowen, C.B. Smith, P. White, A.N. Davison.// Brain., 1976. – Vol. 99. – P. 459–496.

20.Briggs R. Drug treatments in Alzheimer's disease./ R. Briggs, S.P. Kennelly, D. O'Neill.// Clin Med (Lond), 2016. – Vol. 16(3). – P. 247–253.

21.Brion J.P. Neurofibrillary tangles and tau phosphorylation./ J.P. Brion, B.H. Anderton, M. Authelet, R. Dayanandan, K. Leroy, S. Lovestone, J.N. Octave, L. Pradier, N. Touchet, G. Tremp.// Biochem Soc Symp., 2001. – Vol. 67. – P. 81–88.

22.Brookmeyer R. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset./ R. Brookmeyer, S. Gray, C. Kawas.// Am J Public Health., 1998. – Vol. 88(9). – P. 1337–1342.

23.Busche M.A. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer's disease.// M.A. Busche, X. Chen, H.A. Henning, J. Reichwald, M. Staufenbiel, B. Sakmann, A. Konnerth.// Proc Natl Acad Sci USA, 2012. – Vol. 109. – P. 8740–8745.

24.Busciglio J. Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndrome./ J. Busciglio, A. Pelsman, C. Wong, G. Pigino, M. Yuan, H. Mori, B.A. Yankner.// Neuron., 2002. – Vol. 363. – P. 677–688.

25.Buterfield D. Nutritional approaches to combat oxidative stress in Alzheimer's disease./ D. Buterfield, A. Castegna, J. Drake, V. Calabrese.// J. Nutr. Biochem., 2002. – Vol. 13(8). – P. 444–448.

26.Caccamo A. M1 receptors play a central role in modulating AD–like pathology in transgenic mice./ A. Caccamo, S. Oddo, L.M. Billings, K.N. Green, H. Martinez– Coria, A. Fisher, F.M. LaFerla.// Neuron., 2006. – Vol. 49. – P. 671–682.

27.Caricasole A. The Wnt pathway, cell–cycle activation and beta–amyloid: novel therapeutic strategies in Alzheimer's disease?// A. Caricasole, A. Copani, A. Caruso, F. Caraci, L. Iacovelli, M.A. Sortino, G.C. Terstappen, F. Nicoletti././ Trends Pharmacol. Sci., 2003. – Vol. 24. – P. 233–238.

t.me/medicina_free

95

28.Cavalli A. Multi–target–directed ligands to combat neurodegenerative diseases./ A. Cavalli, M.L. Bolognesi, A. Minarini, M. Rosini, V. Tumiatti, M. Recanatini, C.J. Melchiorre.// Med Chem., 2008. – Vol. 51(3). – P. 347–372.

29.Chacon M.A. Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus./ M.A. Chacon, A.E. Reyes, N.C. Inestrosa.// J Neurochem., 2003. – Vol. 87(1). – P. 195–204.

30.Chen C.P. Presynaptic serotonergic markers in community–acquired cases of

Alzheimer’s disease: correlation with depression andneuroleptic medication./ C.P.

Chen, J.T. Alder, D.M. Bowen, M.M. Esiri, B. McDonald, T. Hope, K.A. Jobst, P.T. Francis.// J Neurochem., 1996. – Vol. 66. – P. 1592–1598.

31.Cirrito J.R. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo./ J.R. Cirrito, K.A. Yamada, M.B. Finn, R.S. Sloviter, K.R. Bales, P.C. May, D.D. Schoepp, S.M. Paul, S. Mennerick, D.M. Holtzman.// Neuron, 2005. – Vol. 48(6). – P. 913-922.

32.Clippingdale A.B. The amyloid–β peptide and its role in Alzheimer’s disease./ A.B.

Clippingdale, J.D. Wade, C.J. Barrow.// J Pept Sci., 2001. – Vol. 7. – P. 227–249. 33.Coleman P.D. Synaptic slaughter in Alzheimer's disease./ P.D. Coleman, P.J. Yao.//

Neurobiol Aging., 2003. – Vol. 24. – P. 1023–1027.

34.Combs C.K. Beta–Amyloid stimulation of microglia and monocytes results in TNFalpha–dependent expression of inducible nitric oxide synthase and neuronal apoptosis./ C.K. Combs, J.C. Karlo, S.C. Kao, G.E. Landreth.// J Neurosci., 2001. – Vol. 21. – P. 1179–1188.

35.Craft S. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype./ S. Craft, E. Peskind, M.W. Schwartz, G.D. Schellenberg, M. Raskind, D.Jr. Porte.// Neurology., 1998. – Vol. 50. – P. 164–168.

36.Cras P. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein./ P. Cras, M. Kawai, D. Lowery, P. Gonzalez-DeWhitt, B. Greenberg, G. Perry.// Proc Natl Acad Sci USA, 1991. – Vol. 88. – P. 7552–7556.

t.me/medicina_free

96

37.Crouch P.J. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease./ P.J. Crouch, S.M. Harding, A.R. White, J. Camakaris, A.I Bush, C.L. Masters.// Int J Biochem Cell Biol., 2008. – Vol. 40(2). – P. 181–198.

38.Crouch P.J. Mitochondria in aging and Alzheimer's disease./ P.J. Crouch, K. Cimdins, J.A. Duce, A.I. Bush, I.A. Trounce.// Rejuvenation Res., 2007. – Vol. 10(3). – P. 349–357.

39.Cuajungco M.P. Zinc takes the center stage: its paradoxical role in Alzheimer's disease./ M.P. Cuajungco, K.Y. Faget.// Brain Res Brain Res Rev., 2003. – Vol. 41.

– P. 44–56.

40.Cummings J. Defining disease modifying therapy for Alzheimer's Disease./ J. Cummings, N. Fox.// J Prev Alzheimers Dis, 2017. – Vol. 4. – P. 109–115.

41.Cummings J.L. Alzheimer’s disease drug–development pipeline: few candidates, frequent failures./ J.L. Cummings, T. Morstorf, K. Zhong.// Alz Res Ther., 2014. – Vol. 6. – P. 37.

42.Darreh-Shori T. Apolipoprotein epsilon4 modulates phenotype of butyrylcholinesterase in CSF of patients with Alzheimer's disease./ T. Darreh-Shori, M. Siawesh, M. Mousavi, N. Andreasen, A. Nordberg.// J Alzheimers Dis., 2012. – Vol. 28. – P. 443–458.

43.Darreh-Shori T. Pharmacodynamics of cholinesterase inhibitors suggests add-on therapy with a low-dose carbamylating inhibitor in patients on long-term treatment with rapidly reversible inhibitors./ T. Darreh-Shori, S.M. Hosseini, A. Nordberg. //J Alzheimers Dis., 2014. – Vol. 39. – P. 423–440.

44. Deacon R. T–maze alternation in the rodent./ R. Deacon, P. Nicholas.// Nature protocols., 2006. – Vol. 1. – P. 7–12.

45.DeKosky S.T. Structural correlates of cognition in dementia: quantification and assessment of synapse change./ S.T. DeKosky, S.W. Scheff, S.D. Styren.// Neurodegeneration, 1996. – Vol. 5. – P. 417–421.

46.DeKosky S.T. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity./ S.T. DeKosky, S.W. Scheff.// Ann Neurol., 1990. – Vol. 27. – P. 457–464.

t.me/medicina_free

97

47.Dickson D.W. Intraneuronal amyloid-β accumulation in basal forebrain cholinergic neurons a marker of vulnerability, yet inversely related to neurodegeneration./ D.W. Dickson, M.E Murray.// Brain, 2015. – Vol. 138(6). – P. 1444–1445.

48.Dickson D.W. The pathogenesis of senile plaques./ D.W. Dickson.// J Neuropathol Exp Neurol., 1997. – Vol. 56. – P. 321–339.

49.Dickson D.W. Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease./ R. Morales, J. Bravo-Alegria, C. Duran-Aniotz, C. Sotoa.// Sci Rep., 2015. – Vol. 5:9349.

50.Dong H. Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer's disease./ H. Dong, C.M. Yuede, C.A. Coughlan, K.M. Murphy, J.G. Csernansky.// Brain Res., 2009. – Vol. 15. – P. 169–178.

51.Doody R.S. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease./

R.S. Doody, R. Raman, M. Farlow, T. Iwatsubo, B. Vellas, S. Joffe, K. Kieburtz, F. He, X. Sun, R.G. Thomas, P.S. Aisen.// N Engl J Med., 2013. – Vol. 369. – P. 341– 350.

52.Eisele Y. Peripherally applied Abeta-containing inoculates induce cerebral betaamyloidosis./ Y. Eisele, U. Obermüller, G. Heilbronner, F. Baumann, S. Kaeser, H. Wolburg, L. Walker, M. Staufenbiel, M. Heikenwalder, M. Jucker.// Science, 2010.

– Vol. 330. – P. 980–982.

53.Ellman G.L. A new and rapid colorimetric determination of acetylcholinesterase activity./ G.L. Ellman, K.D. Courtney, V.Jr. Andres, R.M. Feather-Stone.// Biochem Pharmacol., 1961. – Vol. 7. – P. 88–95.

54.Esiri M.M. The basis for behavioural disturbances in dementia./ M.M. Esiri.// J Neurol Neurosurg Psychiatry., 1996. – Vol. 61(2). – P. 127–130.

55.Farris W. Insulin–degrading enzyme regulates the levels of insulin, amyloid beta– protein, and the beta–amyloid precursor protein intracellular domain in vivo./ W. Farris, S. Mansourian, Y. Chang, L. Lindsley, E.A. Eckman, M.P. Frosch, C.B. Eckman, R.E. Tanzi, D.J. Selkoe, S. Guenette.// Proc Natl Acad Sci USA, 2003. – Vol. 100. – P. 4162–4167.

t.me/medicina_free

98

56.Feng Y. Resveratrol inhibits beta–amyloid oligomeric cytotoxicity but does not prevent oligomer formation./ Y. Feng., X.P. Wang, S.G. Yang, Y.J. Wang, X. Zhang, X.T. Du, X.X. Sun, M. Zhao, L. Huang, R.T. Liu.// Neurotoxicology, 2009. – Vol. 30(6). – P. 986–995.

57.Fernandez–Vizarra P. Intra– and extracellular Abeta and PHF in clinically evaluated cases of Alzheimer's disease./ P. Fernandez–Vizarra, A.P. Fernandez, S. Castro– Blanco, J. Serrano, M.L. Bentura, R. Martinez–Murillo, A. Martine, J. Rodrigo.// Histol. Histopathol., 2004. – Vol. 19. – P. 823–844.

58.Forner S. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony./ S.

Forner, D. Baglietto-Vargas, A.C. Martini, L. Trujillo-Estrada, F.M. LaFerla.// Current Neuropharmacology, 2017. – Vol. 15(6). – P. 347–357.

59.Francis P.T. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives./ P.T. Francis, N.R. Sims, A.W. Procter, D.M. Bowen.// J Neurochem., 1993. – Vol. 60. – P. 1589–1604.

60.Francis P.T. The cholinergic hypothesis of Alzheimer's disease: a review of progress./ P.T. Francis, A.M. Palmer, M. Snape, G.K. Wilcock.// J Neurol Neurosurg Psychiatry., 1999. – Vol. 66(2). – P. 137–147.

61.Freir D.B. Blockade of long–term potentiation by beta–amyloid peptides in the CA1 region of the rat hippocampus in vivo./ D.B. Freir, C. Holscher, C.E. Herron.// J Neurophysiol., 2001. – Vol. 85(2). – P. 708–713.

62.Ghezzi L. Disease–modifying drugs in Alzheimer’s disease./ L. Ghezzi, E. Scarpini,

D. Galimberti.// Drug Des Dev Ther., 2013. – Vol. 7. – P. 1471–1478.

63.Giaсobini E. Cholinesterases: new roles in brain function and in Alzheimer's disease./ E. Giaсobini.// Neurochem. Res., 2003. – Vol. 28(3–4). – P. 515–522.

64.Gilman S. Oxford American handbook of neurology./ S. Gilman – Oxford: Oxford University Press, 2010. – 480 p.

65.Giuffrida M.L. Beta-amyloid monomers are neuroprotective./ M.L. Giuffrida., F. Caraci, B. Pignataro, S. Cataldo, P.De Bona, V. Bruno.// J. Neurosci., 2009. – Vol. 29. – P. 10582–10587.

t.me/medicina_free

99

66.Gomez–Isla T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease./ T. Gomez-Isla, R. Hollister, H. West, S. Mui, J.H. Growdon, R.C. Petersen, J.E. Parisi, B.T. Hyman.// Ann Neurol., 1997. – Vol. 41. – P. 17–24.

67.Good P.F. Evidence of neuronal oxidative damage in Alzheimer's disease./ P.F. Good, P. Werner, A. Hsu, C.W. Olanow, D.P. Perl.// Am J Pathol., 1996. – Vol. 149.

– P. 21–28.

68.Gould V. Synaptophysin: a novel marker for neurons, certain neuroendocrine cells, and their neoplasms./ V. Gould, I. Lee, B. Wiedenmann, R. Moll, G. Chejfec.// Hum Pathol., 1986. – Vol. 17. – P. 979–983.

69.Green R.C. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial./ R.C. Green, L.S. Schneider, D.A. Amato, A.P. Beelen, G. Wilcock, E.A. Swabb, K.H. Zavitz.// JAMA, 2009. – Vol. 302. – P. 2557–2564.

70.Grossberg G.T. Present algorithms and future treatments for Alzheimer’s disease./

G.T. Grossberg, G. Tong, A.D. Burke, P.N. Tariotd.// Current J Alzheimers Dis., 2019. – Vol. 67(4). – P. 1157–1171.

71.Grundman M. Perspectives in clinical Alzheimer's disease research and the development of antidementia drugs./ M Grundman, J Corey-Bloom, L.J. Thal.// J Neural Transm Suppl., 1998. – Vol. 53. – P. 255-275.

72.Hardy J. Amyloid deposition as the central event in the aetiology of Alzheimer's disease./ J. Hardy, D. Allsop.// Trends Pharmacol Sci., 1991. – Vol. 12(10). – P. 383–388.

73.Harris K.M. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function./ K.M. Harris, S.B. Kater.// Annu Rev Neurosci., 1994. – Vol. 17. – P. 341–371.

74.Hauptmann S. Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease./ S. Hauptmann, U. Keil, I. Scherping, A. Bonert, A. Eckert, W.E. Muller.// Exp. Gerontol., 2006. – Vol. 41(7). – P. 668–673.

75.Hensley K. A model for beta–amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease./ K. Hensley, J.M.

t.me/medicina_free

100

Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd, D.A. Butterfield.// Proc Natl Acad Sci USA, 1994. – Vol. 91. – P. 3270–3327.

76.Hicks D. Membrane targeting, shedding and protein interactions of brain acetylcholinesterase./ D. Hicks, D. John, N.Z. Makova, Z. Henderson, N.N. Nalivaeva, A.J. Turner.// J Neurochem., 2011. – Vol. 116(5). – P. 742–746.

77.Holtzman D.M. Alzheimer’s disease: the challenge of the second century./ D.M. Holtzman, J.C. Morris, A.M. Goate.// Sci Transl Med., 2011. – Vol. 3(77). – P. 77.

78.Hoozemans J.J. The unfolded protein response is activated in Alzheimer's disease./ J.J. Hoozemans, R. Veerhuis, E.S. Van Haastert, J.M. Rozemuller, F. Baas, P. Eikelenboom, W. Scheper.// Acta Neuropathol (Berl), 2005. – Vol. 110. – P. 165– 172.

79.Howlett D.R. Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer beta-amyloid fibril formation./ D.R. Howlett, A.R. George, D.E. Owen, R.V. Ward, R.E. Markwell.// Biochem J., 1999. – Vol. 343(2). – P. 419–423.

80.Hsiao P. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice./ P. Hsiao, S. Chapman, L. Nilsen, S. Yonkin, F. Yang.// Science, 1996. – Vol. 274(5284). – P. 99–102.

81.Hsieh H. AMPAR removal underlies Aβ–induced synaptic depression and dendritic spine loss./ H. Hsieh, J. Boehm, C. Sato, T. Iwatsubo, T. Tomita, S. Sisodia, R. Malinow.// Neuron, 2006. – Vol. 52. – P. 831–843.

82.Hu L. The impact of abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in Alzheimer's disease-like transgenic mice./ L. Hu, T.P. Wong,

S.L. Côté, K.S. Bell, A.C. Cuello.// Neuroscience, 2003. – Vol. 121(2). – P. 421-432. 83.Huang X. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry./ X. Huang, C.S. Atwood, M.A. Hartshorn, G. Multhaup, L.E. Goldstein, R.C. Scarpa, M.P. Cuajungco, D.N. Gray, J. Lim, R.D. Moir, R.E. Tanzi, A.I. Bush.// Biochemistry, 1999. – Vol. 38(24). – P.

7609–7616.

t.me/medicina_free